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Abstract Approximate critical conditions for a thermal explosion problem
is developed for a two-step reactions based on theories of Semenov and Frank-Kame-
netskii. The aim is to examine the contributions of the radical termination step and
the temperature dependent pre-exponential factor on the critical parameters within the
framework of classical stationary and non-stationary theories. In the non-stationary
case, a more general expression for the critical Semenov parameter (�cr ) and criti-
cal temperature (θcr ) were obtained by asymptotic procedure. In the stationary case,
numerical estimates for the critical Frank-Kamenetskii parameter (δcr ) and the critical
temperature (θcr ) were obtained by variational method technique. It was observed that
the Semenov and Frank-Kamenetskii parameters are greatly influenced by the termi-
nation step and the variable pre-exponential factor. Apart from elucidating hitherto
unknown features in the theory of thermal explosion, the results are more general as
some known results are easily recovered.
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1 Introduction

The studies and investigations of the theory of thermal explosion are not only relevant
to the development of physics of thermal explosion but also to fundamental branches
of knowledge such as chemical kinetics and heat transfer theory. The phenomenon of
thermal explosion is used in the laboratory as a method of physicochemical investiga-
tion. In most cases, the practical interest in thermal explosion processes arises mainly
from problems of industrial safety in some operations with explosive systems(chem-
ical storage, processing, coal mining, etc.).

The theory of thermal explosion was initiated by Semenov and Frank-Kamenetskii
several decades ago. Semenov (1928) considered the classical problem of a spatially
homogeneous gaseous thermal explosion model, while Frank-Kamenetskii (1939)
considered the impossibility of the steady state represented as the point where the heat
loss is tangent to the heat of reaction curve [22]. Thus, Semenov theory of self-ignition
follows the time variation of spatially averaged temperature of the reacting gas mix-
ture in a vessel in order to determine the threshold at which the temperature rapidly
increases in a seemingly boundless manner. The Frank-Kamenetskii’s spontaneous
ignition analysis involves a delineation of the conditions under which the steady state
energy equation possesses a physically valid solution from those under which it does
not. In a response to Semenov and the Frank-Kamenetskii theories, several works in
this direction have been reported in literature, further developments in the Semenov
model have been undertaken [1–22].

The pre-exponential factor is a very important thermo-physical parameter in the
kinetic theory of gases but is often assumed constant. It characterises the total number
of collisions of molecules at the average thermal velocity, which in turn affects the rate
of reactions. Thus, in recent times, the use of the temperature dependent pre-expo-
nential factor is on the increase [1–3]. In particular, [1] used a power law temperature
dependent pre-exponential factor to study the critical behaviour in a three step reactions
kinetics model. The effect of chain termination reaction step on the thermal explosion
parameter was established based on the Frank-Kamenetskii thermal explosion theory.

Most of the works reported in literature in the direction of Semenov theory were
directed at one-step reaction system. But in reality, a reaction involving reactants(fuels)
leads to liberation of the chain-carriers(radicals) and need to be accounted for. Moti-
vated by this, the present work extends the classical one-step reaction to a two step
reaction system by adding the chain termination step. Approximate and improved
approximate Semenov number were obtained by the Semenov and an improved
approximation by the Mischenko and Rozov asymptotic technique respectively.
Furthermore, the thermal explosion theory of the steady state system has been consid-
ered using a variational method, leading to the determination of numerical estimates
for the Frank-Kamenetskii parameter (δcr ) and the critical temperature (θcr ).

2 Problem formulation and basic equation

We consider a system of exothermic reactions occurring in a closed vessel in the form
Initiation:
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F
w1−→ R, �E1 → ∞, w1 = A1C f exp

(−E1

RT

)
. (I)

Termination:

R + M
w2−→P, �E2 = 0, w2 = A2CR, (II)

where F is the fuel and R is the radical, M is the inert (third) body, P is the product,
E1 and E2 are the activation energies of the initiation and termination steps respec-
tively, w1 and w2 are the local reaction rates of the initiation and termination steps
respectively. Let WF and WR be the global reaction rates for the fuel and radical, then

WF = −w1, and WR = w1 − w2. (III)

A typical example of the reaction scheme (I–II) is the thermal decomposition of nitro-
methane (CH3NO2) at low pressure, given by

CH3NO2 → CH•
3 + NO2, E1 = 53, 600 k J,

1

2
CH•

3 → C2H6 + heat, E2 = 0,

where CH•
3 is the methyl radical formed and consumed in (I) and (II) respectively

[12]. Nitromethane is regarded as a very good propellant from the point of view of its
physical properties and handling.

A mathematical statement of the problem, which satisfy the above premises, leads
to the familiar equations of the classical theory for the a system of first-order reactions
that occur in the layer −h < x < h

∂CF

∂t
= D1

∂2CF

∂x2 − w1 = D1
∂2CF

∂x2 − A1CF exp

(−E1

RT

)
, (1)

∂CR

∂t
= D1

∂2CR

∂x2 + w1 − w2 = D1
∂2CF

∂x2 + A1CF exp

(−E1

RT

)
− A2CR, (2)

and

ρcp
∂T

∂t
= K

∂2T

∂x2 + Q1 A1C f exp

(−E1

RT

)
+ Q2 A2CR − Sχ

V
(T − T0). (3)

(1) and (2) are the equations for the concentration of the fuel (CF ) and radical (CR)
respectively, while (3) is temperature field (T ) equation. In as much as the reaction is
symmetric, it will suffice to consider the equations in the half-layer 0 < x < h. Thus
the boundary conditions for the system (1)–(3) are the general Newtonian exchange
of heat and the constancy of the temperature at the wall surfaces [22]

x = 0,
dT

dy
+ H

K
(T − T0) = 0 and x = ±h, T = T0 on �. (4)
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The initial conditions are specified by the constancy of the reactants and temperature
over the entire vessel volume:

CF (0) = CF0, CR(0) = CR0 and T (0) = T0, (5)

where CF , CR and T are the fuel concentration, radical concentration and temperature
respectively, A1(T ) = a1T m and A2(T ) = a2T n are the variable pre-exponential fac-
tors for the initiation and termination reactions respectively, Q1 and Q2 are the heat
of reactions for the initiation and termination reactions respectively, T0 is the ambient
temperature, S is the surface area, χ is the heat transfer coefficient, K is the thermal
diffusivity, � is the surface of the vessel walls, and D1 and D2 are the fuel and radical
diffusivities respectively, while m and n are numerical exponents.

By assuming negligible reactant diffusivities (D1 = D2 = 0) [4,5,15] and using
the following dimensionless variables:

η = CF

CF0
, ξ = CR

CF0
, θ = T − T0

βT0
, t ′ = a1 exp

(−1

β

)
t,

Bi = H

K
, β = RT0

E
and x ′ = x

h
.

After dropping primes, the dimensionless governing Equations (1)–(3) become:

dη

dt
= −η(1 + βθ)m exp

(
θ

1 + βθ

)
, (6)

dξ

dt
= η(1 + βθ)m exp

(
θ

1 + βθ

)
− λξ(1 + βθ)n, (7)

γ
∂θ

∂t
= 1

δ

∂2θ

∂x2 + η(1 + βθ)m exp

(
θ

1 + βθ

)
+ µξ(1 + βθ)n − �θ, (8)

η(0) = 1, ξ(0) = ξ0, θ(0) = 0, (9)

and

∂θ

∂x
(0) + Bi θ(0) = 0, and θ(1) = 0, (10)

where

γ = ρcp RT 2
0

CF0 Q1 E
, � =

S RT 2
0 χ exp

(
1
β

)
a1 Q1 ECF0Vρcp

, ξ0 = CR0

CF0
, λ = a2

a1
ξ0 exp

(
1

β

)
,

δ = Eh2q1a1CF0

K RT 2
0 exp

(
1
β

) ,
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where, q = Q1
Q2

and µ = qλ, β is the dimensionless activation energy parameter, η and
ξ are the dimensionless fuel and radical concentrations respectively, θ is temperature,
� is the heat loss parameter (Semenov parameter), while γ is the reciporcal of the
adiabatic temperature rise and χ is the coefficient of heat transfer, ξ0, a1, and a2 are
constants.

Solution of the general system of Equations (6)–(10) present great mathematical
difficulties. Therefore, approximate ways of approaching the problem-known as the
stationary and the non-stationary theory of thermal explosion—have been developed
within the framework of classical theories.

3 Non-stationary theory

At the commencement of the reaction, no heat is released by the system and therefore
no heat is loss. As the reaction proceeds, the system of equations thus reduce to:

dη

dt
= −η(1 + βθ)m exp

(
θ

1 + βθ

)
, (11)

dξ

dt
= η(1 + βθ)m exp

(
θ

1 + βθ

)
− λξ(1 + βθ)n, (12)

γ
dθ

dt
= η(1 + βθ)m exp

(
θ

1 + βθ

)
+ µξ(1 + βθ)n − �θ, (13)

η(0) = 1, ξ(0) = ξ0, θ(0) = 0. (14)

The profiles of η, ξ and θ for an adiabatic Arrhenius system is in line with the physics
of the problems as shown in Fig. 1.

3.1 Semenov approximation

Based on the Semenov criterion, we ignore reactant consumption(as is usually done
in thermal explosion theory) by setting

η = 1 and ξ = ξ0, (15)

which corresponds to the zero-order approximation (γ → 0). The energy balance
Equation (13) reduces to

γ
∂θ

∂t
= (1 + βθ)m exp

(
θ

1 + βθ

)
+ �(1 + βθ)n −�θ = f (θ;β) ≡ q+ − q−, (16)

where q+ and q− are the heat produced and heat loss respectively and � = µξ0. The
criterion for thermal runaway are identified by the two relations:

q+ = q− and
dq+
dθ

= dq−
dθ

, (17)
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Fig. 1 Plots of θ(t), η(t) and ξ(t) vs t, λ = .01, β = .01, q = 1

where f = (1 + βθ)m exp
(

θ
1+βθ

)
+ µξ0(1 + βθ)n − �θ , and Eq. (17)a refers to

the meeting point of the heat loss line and the curve of heat of reaction, while (17)b
represents the point (critical) at which the line is tangent to the curve. Using Eq. (17),
we have

(1 + βθ)m exp

(
θ

1 + βθ

)
+ �(1 + βθ)n − �θ = 0, (18)

and

(1 + βθ)m−2 exp

(
θ

1 + βθ

)
+ mβ(1 + βθ)m−1 exp

(
θ

1 + βθ

)

+ n�(1 + βθ)n−1 − � = 0. (19)

The combination of (18) and (19) leads to

(1 + βθ)2 − θ [1 + mβ(1 + βθ)] + �[(1 + βθ) − nθ ]θ1+n−m
( −θ

1 + βθ

)
= 0.

(20)

Taking asymptotic expansion of the non-linear term in β, (20) leads to the quadratic
equation

[(1 − m)β2θ2 − {1 − [(2 − m) + �e−1(1 − n)]}θ + (1 + �e−1) = 0, (21)
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whose solutions are

θ = θI = (1 + �e−1){1 + [(2 − m) + �e−1(1 − n)]β} + O(β2) (22a)

or

θ = θE = 1 − [(2 − m) + �e−1(1 − n)]β
(1 − m)β2 − θI , (22b)

where the critical temperature θI and θE refers to the ignition and extinction tem-
perature respectively. The critical point θE is usually neglected due to the fact that
it is extremely large to be considered a critical point [21]. Thus, the only realistic
critical point is the ignition temperature θcr = θI . The expression for the approximate
Semenov parameter can be obtained by substituting θcr = θI into Eq. (18). Thus

�cr =
(1 + βθcr )

m exp
(

θcr
1+βθcr

)
+ �(1 + βθcr )

n

θcr
. (23)

In the particular case of high activation energy asymptotics (β → 0) and ξ0 = 0, we
recovered the the classical Semenov conditions for therrmal runaway

�cr = e and θcr = 1. (24)

One of the problems which concerns the non-stationary theory is the displacement of
the thermal explosion limit caused by the combustion of material during the induction
period, i.e. the variation of �cr with γ . For a normal non-degenerate system, this var-
iation merely introduces a correction, but it becomes very significant for large values
of γ (system with a relatively small heat of reaction). The derivation of a new approx-
imate criterion starts from the approximate criterion of using asymptotic analysis. For
a one-step model(first order reaction), [19] obtained asymptotic solution based on the
assumption of infinite activation energy as

�cr = e
[
1 − �̄(γ )2/3

]
, (25)

where �̄ = 2.85. Further approximations by [8,13] led to �̄ = 2.52 and �̄ = 2.95
respectively.

In order to get better approximation of (25), [5,14] have made use of the approxi-
mation formula [16]

�cr = eS(β)

[
1 − 2

2
3 �0 Z(β)γ

2
3 + 4

9
V (β)γ ln

(
1

γ

)]
+ O(γ + β2), (26)
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where eS(β), Z(β) and V (β) are as defined in Appendix A. For the problem under
consideration, after rigorous calculation, we obtain

eS(β) = (e+n)+ {
(em+n�)(1+�e−1) − (e+n)

[
(2 − m)+�e−1(1 − n)

]}
β

1+�e−1 ,

Z(β) = 1+�e−1

(1 − �e−1)1/3

{
1+

[
(2 − m)+�e−1(1 − n)

− 1+�e−1

3(1 − �e−1)

(
m − �e−1+n�e−1

)]
β

}
,

V (β) = (1+�e−1)2
{
(1 − 2�e−1)+2

[
(1+�e−1)(1+m − �e−1+n�e−1)

+(1 − 2�e−1)(2 − m+�e−1 − n�e−1) (27)

− (1+�e−1)(1 − 2�e−1)

(1 − �e−1)
(m − �e−1+n�e−1)

]
β

}

Substituting (27) into (26) we obtain a generalized expression from which special
cases could be recovered. For example, for m = n = β = � = 0, we recovered [14]
as

�cr = e

[
1 − 2.946(γ )2/3 + 4

9
γ ln

1

γ

]
. (28)

The case of m = n = � = 0, we also recovered [5] as

�cr = e(1 − 2β)

[
1 − 2.946(1 + 2β)γ

2
3 + 4

9
(1 + 6β)γ ln

(
1

γ

)
+ O(γ + β2)

]
.

(29)

In a recent work, the case n = � = 0, we recovered [3] as

�cr = e [1 + 2(m − 1)β]

{
1 − 2.946

[
1 +

(
2 − 4

3
m

)
β

]
γ

2
3

+4

9
[1 + 2(3 − m)β] γ ln

(
1

γ

)
+ O(γ + β2)

}
. (30)

The plot of �cr , θcr against γ, β,� are shown in Figs. 2,3,4,5,6, and 7.

4 Time-independent theory of thermal explosion

The time-independent theory of thermal explosion is based on the assumptions that
the reactant mixture is motionless, that the heat losses are determined by the thermal
conductivity of the reacting mixture and are proportional to the temperature gradient
and that the reactant consumption is negligible. The theory of thermal explosion is
viewed as the sudden impossibility of a stationary reaction in which the heat produc-
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Fig. 2 �cr vs β for n = −2, γ = 0.05,� = 0.05 for m = {−2, 0, 0.5}

Fig. 3 �cr vs γ for n = −2, β = 0.05,� = 0.05 and m = {−2, 0, 0.5}
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Fig. 4 �cr vs � for n = −2, γ = 0.05, β = 0.05 for m = {−2, 0, 0.5}

Fig. 5 �cr vs γ for m = 0.5, n = −2, β = 0.05 for � = {0, 0.05, 0.1}
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Fig. 6 θcr vs β for n = −2, γ = 0.05,� = 0.05 for m = {−2, 0, 0.5}

Fig. 7 θcr vs β for n = −2, γ = 0.05, m = 0.5 for � = {0, 0.05, 0.1}
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tion is completely balanced by heat loss to the surrounding walls. Based on the above,
the one-dimensional steady state equations to be examined in two limiting cases are

d2θ

dx2 + δ

[
(1 + βθ)m exp

(
θ

1 + βθ

)
+ �(1 + βθ)n

]
= 0, (31)

with boundary condition

Bi = 0,
dθ

dx
(0) = 0, and θ(1) = 0, (32)

Bi = ∞, θ(0) = 0, and θ(1) = 0. (33)

Due to the non-linear nature, an approximate solution based on the variational tech-
nique is considered [Appendix B]. Thus, the mathematical criteria for maximum crit-
ical ignition points is

dδ

dθ
= 0,

d2δ

dθ2 < 0, (34)

from which the calculation of maximum temperature (θcr ) and the corresponding criti-
cal parameter (δcr ) are obtained. And beyond θcr and δcr , we have the onset of thermal
explosion. Before transforming the problem to a variational form, for simplicity, we
let

f (θ) = (1 + βθ)m exp

(
θ

1 + εθ

)
+ �(1 + βθ)n, (35)

and the primitive of f (θ) is:

F(θ) =
∫

f (θ)dθ =
∫ [

(1 + βθ)m exp

(
θ

1 + βθ

)
+ �(1 + βθ)n

]
dθ.

The domain of Hδ is restricted to those functions satisfying the boundary conditions
(32) and (33); an example of such a function is

θ(y) = A cos
(πy

2

)
+ B cos

(
3πy

2

)
. (36)

Hence,

Hδ(A, B) = 1

8
π2(u A2 + 6ABv + 9B2w) − δ

∫ 1

0
F(θ)dy, (37)
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where u = 1
2 , v = 0, w = 1

2 . After substituting (37) into (B11) in Appendix B, we
obtain A, B(A + B = θcr ) and δcr , by solving the simultanoeus equations:

1

4
π2(u A + 3vB) − δ

∂

∂ A

⎛
⎝

1∫
0

F(θ)dy

⎞
⎠ = 0, (38)

3

4
π2(vA + 3wB) − δ

∂

∂ B

⎛
⎝

1∫
0

F(θ)dy

⎞
⎠ = 0, (39)

⎛
⎝π2u

4
− δ

∂2

∂ A2

1∫
0

F(θ)dy

⎞
⎠

⎛
⎝9π2w

4
− δ

∂2

∂ B2

1∫
0

F(θ)dy

⎞
⎠

=
⎛
⎝3π2v

4
− δ

∂2

∂ A∂ B

1∫
0

F(θ)dy

⎞
⎠

2

. (40)

5 Numerical results

We have considered the influence of chain consumption and variable pre-exponential
factor on the critical parameters for determining thermal explosion and the correspond-
ing maximum temperature in a two-step reactive system.

In the non-stationary system or spatially homogeneous system, we have ob-
tained more general expressions for the critical parameter based on the classical
Semenov theory and Mischenko and Rozov approximation formula. The heat trans-
fer rate (�cr ) decreases with increasing β, γ and � for some numerical exponent
m = {−2.0, 0.0, 0.5} as shown in Figs. 2,3,4, and 5, while the critical temperature
(θcr ) is on the contrary as revealed in Figs. 6 and 7. It could established that heat
transfer rates increases with m, while θcr decreases with m.

In the time-independent system, we obtained numerical approximations based on
the variational method. The level of approximation is within the tolerance limit of
98% when compared with known exact solution [1,2]. The variation of δcr and θcr

with β for some m and � are shown in Figs. 8 and 9 respectively. It can be observed
that for all �, θcr decreases with m, while δcr increases m. However, in the limit,
0 ≤ β < 0.02, θcr and δcr and decreases respectively with �. Thermal explosion is
faster for a bimolecular reaction (m = 0.5) at a relatively higher temperature.

6 Conclusion

The study elucidates the significance of the variable pre-exponential factor and
the radical termination step on the classical theory of thermal explosion. Although
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Fig. 8 δcr vs β(= ε) for � = {0, 0.05, 0.1} and m = {−2, 0, 0.5}

Fig. 9 θcr vs β(= ε) for � = {0, 0.05, 0.1} and m = {−2, 0, 0.5}

previous studies have ignored the contribution of these in whole or in part, the termi-
nation step is a highly exothermic reaction and as such cannot be ignored. Furthermore,
the behaviour of the numerical exponent (m), which determines the nature of reaction
on the system, gave further insight.
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The results have shown that the additional heat contribution from the termination
step leads to a reduction in the Semenov and Frank-Kamenetskii parameters and a
corresponding increase in critical temperature. This implies that thermal explosion is
hasten by the termination step with a corresponding increase in the explosion tem-
perature. In addition, the bimolecular reaction (m = 0.5) reaches thermal explosion
faster and at a higher temperature than the sensitized reaction (m = −2), while the
Arrhenius reaction (m = 0) lies between them. This study would find application in
the industry particularly for safety purposes and also extend the frontier of research
in thermal explosion theory.

Acknowledgments The corresponding author was supported by the Skirball postdoctoral fellowship of
the Center of Advanced Studies in Mathematics at the Mathematics Department of Ben Gurion University.

Appendix A

In line with [6,16], the critical trajectory is obtained by the aproximation,

�cr = eS(β)

[
1 − 2

2
3 �0 Z(β)γ

2
3 + 4

9
V (β)γ ln

(
1

γ

)
+ O(γ + β2)

]
, (A1)

where

eS(β) =
(1 + βθI )

m exp
(

θI
1+βθI

)
+ �(1 + βθI )

n

θI
, Z(β) = θI

((2 − (1 − 2β)θI )
1/3 ,

V (β) = θ2
I

3 − 2θI (1 − 3β)

((2 − (1 − 2β)θI )
2 , and θI = 1 + (2 − m)β. (A2)

The coefficient �0 is the least positive for the equation

J−1/3

(
2

3
�3/2

)
+ J1/3

(
2

3
�3/2

)
= 0, (A3)

where Jk is the Bessel function. Thus, �0 = 2.338107 [23].

Appendix B

The variational method

Consider a boundary value problem in the form

∇2θ + δ f (θ) = 0 in D,

θ = 0 ∂ D. (B1)
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Given the functional

Hδ(θ) =
∫
D

(
1

2
|∇θ |2 − δF(θ)

)
dV, (B2)

where F is a primitive of f ; i.e F = ∫
f dθ . The variational principle suggests that

A1, A2,...,An be determined as the solution of the system

∂ Hδ

∂ Ak
= 0, k = 1, 2, . . . , n, (B3)

giving an approximate solution θ = ∑
Akθk corresponding to the chosen δ. The

condition determining criticality is according to the implicit function theorem

∂2 Hδ

∂ Ak∂ Al
= 0, k, l = 1, 2, . . . , n. (B4)

After omitting a constant geometric factor, Eq. (B2) can be expressed as,

Hδ(θ) =
1∫

0

ρ j
(

dθ

dρ

)2

dρ − δ

1∫
0

ρ j F(θ)dρ. (B5)

Equations (B3) and (B4) together give (n + 1) equations for the unknowns
A1, A2,…,An and δcr , which in turn determine θcr . The numerical success of this
procedure depends on a judicious choice of a trial function θ1, θ2,…,θn . At this point,
we take an example of such a function which satisfies the boundary conditions as

θ(ρ) = A1g1(ρ) + A2g2(ρ), (B6)

where the constants A1, A2 in (B6) are replaced by A and B respectively. Hence,

Hδ(A, B) = 1

8
π2(u A2 + 6ABv + 9B2w) − δ

1∫
0

ρ j G(θ)dρ, (B7)

where

u =
1∫

0
ρ j sin2

(
πρ
2

)
dρ =

{
1
2 , j = 0,

1
2( j+1)

+ 1
π2 j = 1, 2,

(B8)

v =
1∫

0
ρ j sin

(
πρ
2

)
sin

(
3πρ

2

)
dρ =

⎧⎨
⎩

0, j = 0,
−1
π2 , j = 1,
−5
4 , j = 2,

(B9)
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w =
1∫

0
ρ j sin2

(
3πρ

2

)
dρ =

{
1
2 , j = 0,

1
2( j+1)

+ 1
9π2 , j = 1, 2.

(B10)

The simultaneous Equations (B3) and (B4) to be solved for A, B and δ are;

∂ Hδ

∂ A
= 0,

∂ Hδ

∂ B
= 0,

(
∂2 Hδ

∂ A2

)(
∂2 Hδ

∂ B2

)
= ∂2 Hδ

∂ A∂ B
, (B11)

where θcr = A + B and δ = δcr . By an interactive procedure on the Mathematica
6.0 software, we obtain solutions, which compare favourably with known analytic
solutions in literature.
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